洛南高等学校附属中学校2017年第2問(3)

平面図形 相似
洛南高等学校附属中学校2017年算数第2問(3)の図1  右の図において、AD:DCを最も簡単な整数の比で表しなさい。

角度に記号をつけていきます。
角DABの大きさを〇、角DBAの大きさを×とすると、〇と×の和は180-135=45°となります。
また、角DBAの大きさと角DBCの大きさの和が45°だから、角DBCの大きさは〇となり、三角形DABと三角形DBCは相似(相似比はAB:BC=1:2)となります。
辺ADの長さを①とすると、(三角形DBCの)辺BDの長さは①×2=②となり、三角形DAB(当然三角形DBCも同様ですね)の135°を挟む2辺の長さの比は1:2となります。
したがって、
  AD:DC
 =①:(②×2)
 =①:④
 =1:4
となります。
なお、この問題は、下の有名問題と同じです。
洛南高等学校附属中学校2017年算数第2問(3)の図2

このページの先頭へ