神戸海星女子学院中学校2000年第1問(6)

場合の数 順列 平均 総和
 [1][2][3][4]の4枚のカードから3枚取り出し、並べてできる3桁(けた)の整数は全部で□個あり、それらをすべて加えると□になります。

百の位の数は、1~4の4通りあり、そのそれぞれに対して、十の位の数は百の位の数以外の3通りあり、そのそれぞれに対して、一の位の数は、百の位の数と十の位の数以外の2通りあるから、3桁の整数は全部で
  4×3×2 ←異なる4個のものから3個選んで並べる場合の数(順列)ですね。
 =24個
あります。
これらの整数の各位の平均は
  (1+2+3+4)/4 ←実際は、(1+4)/2を計算すればいいですね。
 =5/2
となるから、これらの整数の和は
  5/2×(100+10+1)×24 ←百の位も十の位も一の位も平均が5/2となるから、3桁の整数の平均は5/2×100+5/2×10+5/2×1となります。あとは、平均×個数=総和を使うだけですね。
 =60×111
 =6660
となります。
次の問題にもぜひ取り組んでみましょう。
 灘中学校2006年1日目第2問
 洛南高校附属中学校2015年第5問

このページの先頭へ